- 1. Newton's 3 laws of motion
- 2. How to apply Newton's laws in familiar situations
- 3. The basic units for mass and force
- 4. How to use vectors in calculating the effects of forces

Understand

- The difference between the approach of Aristotle versus that of Galileo and Newton in describing the relationship between force and motion
- 2. The difference between mass and weight.
- 3. How to calculate the acceleration produced by a given force
- 4. The effects of friction and air resistance upon motion.
- 5. How to draw and use a free body diagram

Newton's Three Laws

- Any object remains at rest or in motion along a straight line with constant speed unless acted upon by a net force
- The product of the mass (m) of any object times its acceleration (a) is equal to the net force (F) acting on the object: F=m a

F = ma a = F/m m = F/a

• For every force, or action there is an equal but opposite force, or reaction.

Newton's work on gravitational force

 There is a popular story that Newton was sitting under an apple tree, an apple fell on his head, and he suddenly thought of the Law of Gravitation.

Weight

- **Weight** is a force generated by the gravitational attraction of the earth
- Weight is a force (measured in Newtons) and it is always directed toward the center of the earth. The magnitude of the force depends on the mass of the object:

W = mg

(measured in Newton)

where g is the gravitational acceleration on Earth surface $g = 9.8m/s^2$

Weight in Other Worlds

 Gravitational force is different in other worlds as it depends on the mass and size of the planet or star

 $g_{Sum} = 265.3 m/s^2$

 $g_{Mars} = 3.7 m/s^2$

 $g_{Moon} = 1.6m/s^2$

• If you put the same object on the Moon and weighed it, its weight would be 1/6 the weight on Earth

Weight on the Moon

- See Movie of astronauts walking on the moon
- 60 kg mass corresponds to
 - a weight of 130 lb on Earth
 - a weight of 22 lb on the Moon.

Mass vs Weight

- Mass is the quantity of matter in an object.
- Weight is a force exerted on a mass in a gravitational field
- Mass is the same everywhere, but weight changes with local gravitational acceleration
- 100 kg mass on Earth = 100 kg mass on Moon

Third Law of Motion in Action

- We feel the third law every time we interact with other surroundings.
- For example when you punch someone in the face you know that your hand applies a force to the person's face, but the person's face also applies a force to your hand. Usually, the reason it hurts the face more than the hand is because the face is softer than the hand.

Example: Pushing a chair

- You push the chair with a force F₁
- The chair acts on your hand with a force F_2 that is equal in magnitude to F_1 but in the opposite direction:

Newton's Third Law of Motion: Action/Reaction Principle

- For every force, or action there is an equal but opposite force, or reaction.
- This Law tells us that a force does not exist in isolation
- A force act between two objects either in contact or at a distance

Normal Force

• System is "in equilibrium":

acceleration = 0 fi net force = 0

- 1) The Force of gravity (W) pulling toward the Earth
- 2) Gravity must be balanced by another force, the Normal Force (N) in the opposite direction

$$\hat{\mathbf{A}}F = ma = 0
N - mg = ma = 0$$

$$N = mg$$

Normal Force

- The force opposing gravity is caused by the table and it is known as the Normal force.
- "Normal" is not meant as "ordinary" but "perpendicular" or "orthogonal". The normal force is perpendicular to the surface that causes it.
- The normal force arises from the repulsive forces between the atoms at the surface of the book and the atoms at the surface of the table.

Drag or Air Resistance

- Drag or air resistance is the force which opposes an object moving through air
- Drag tends to increase as the object moves faster
- The amount of drag depends on the shape of the object

- Force of gravity (W)
 - Normal Force (N)
 - Force exerted by pushing hand (P)
 - Frictional force (f)
- Equation for motion: Horizontal -

